Instructions for Use

Revolution cfDNA Max 20 Kit[™] Revolution cfDNA Max 20XL Kit[™] Revolution cfDNA Reagent Kit[™]

Revision Q

For in vitro diagnostic use only

REF

100131, 100155, 100119

nRichDX, Inc. 15339 Barranca Pkwy Irvine, CA 92618 USA +1 949-341-1980

Table of Contents

Intended Use
Summary and Explanation
Principles and Procedures
Materials Provided
Materials Required but Not Provided7
Revolution nRicher™ Cartridge Usage and Handling8
Reagent Storing and Handling9
Sample and Reagent Volumes9
General Precautions
Procedure
1. Protease Preparation10
2. Sample Preparation
3. nRicher Cartridge Preparation
4. Lysis and Bead Binding
5. Bead Capture
6. Bead Washing
7. Elution
Troubleshooting
Technical Support
Warnings and Precautions
Appendix
Symbols
Trademarks, Terms, and Warranty Information25

Intended Use

The Revolution cfDNA Max 20 Kit, Revolution cfDNA Max 20XL Kit, and Revolution cfDNA Reagent Kit are intended to extract cell-free DNA (cfDNA) from human plasma and urine.

The kits are intended to be used by physicians and technicians that have received training in molecular biology laboratory techniques.

These kits are intended for in vitro diagnostic use only.

Summary and Explanation

The Revolution cfDNA kits employ well-characterized technology to extract cfDNA from largevolume plasma and urine samples. The kit procedures are designed so users can process multiple samples simultaneously.

The procedures are suitable for nucleic acid isolation from human cell-free plasma or urine. Samples can be either fresh or frozen, although it is recommended that samples that have been previously frozen and thawed are not frozen again. The procedures are designed for minimal user handling, which enables the users to safely handle potentially infectious samples.

The isolated cfDNA is ready for use in downstream applications, including PCR, real-time PCR (RT-PCR), and Next-Generation Sequencing (NGS). Alternatively, the purified cfDNA can be stored at -25 °C to -15 °C for later use.

Principles of the Procedure

Each Revolution cfDNA kit procedure includes the following steps:

- Digest proteins in the plasma or urine sample and protect cfDNA from degradation
- · Bind the cfDNA in the plasma or urine sample to magnetic beads
- · Capture the beads by magnetic separation
- Wash the beads
- Elute the cfDNA from the magnetic beads

Protease Treatment

Enzymes and other proteins are digested in the Revolution nRicher Cartridge.

Bead Binding

Revolution cfDNA Magnetic Beads and Revolution cfDNA Binding Buffer are combined with the sample in the Revolution nRicher Cartridge, placed into the Revolution Processor, and incubated to allow the magnetic beads to capture the cfDNA in the sample.

Bead Capture

The Revolution Mag Capsule is attached to the Revolution nRicher Cartridge, which is again placed into the Processor and incubated to capture the beads in the Microvial Tube portion of the nRicher Cartridge.

Bead Washing

The Microvial Tube is removed from the Revolution nRicher Cartridge and washed twice with Revolution cfDNA Wash Solution and then rinsed twice with 80% ethanol using the Revolution Mag Rack to capture the magnetic beads after each wash or rinse. The beads are then dried.

Elution

The cfDNA is eluted from the beads with Revolution cfDNA Elution Buffer and is ready for downstream applications.

Materials Provided

IMPORTANT: Upon receipt of the kits, remove the Protease Powder and Magnetic Beads from the kit and store them at the temperatures indicated on the component labels and package insert. All other kit components may be stored at ambient temperature.

Revolution cfDNA Max 20 Kit, 100131

- Revolution cfDNA Surfactant, 7 mL, 10007
- Revolution cfDNA Lysis Buffer, 22 mL, 10011⁺
- Revolution cfDNA Protease Powder, 40 mg, 10012[‡] or, 50 mg,10012-1[‡]
- Revolution cfDNA Protease Buffer, 2.2 mL, 10056 or, 2.8 mL, 10056-1
- Revolution cfDNA Binding Buffer, 160 mL, 10018⁺
- Revolution cfDNA Magnetic Beads, 2 x 1.4 mL, 10028[‡]
- Revolution cfDNA Wash Solution, 54 mL, 10084
- Revolution cfDNA Elution Buffer, 3.5 mL, 10030
- Revolution nRicher Cartridges, 3 packs of 8 cartridges, 100111
- Instructions for Use (online)

Revolution cfDNA Max 20XL Kit, 100155

- Revolution cfDNA Surfactant, 7 mL, 10007
- Revolution cfDNA Lysis Buffer, 22 mL, 10011†
- Revolution cfDNA Protease Powder, 40 mg, 10012[‡] or, 50 mg,10012-1[‡]
- Revolution cfDNA Protease Buffer, 2.2 mL, 10056 or, 2.8 mL, 10056-1
- Revolution cfDNA Binding Buffer, 160 mL, 10018⁺
- Revolution cfDNA Magnetic Beads, 2 x 1.4 mL, 10028[‡]
- Revolution cfDNA Wash Solution, 54 mL, 10084
- Revolution cfDNA Elution Buffer, 3.5 mL, 10030
- Revolution nRicher Cartridges, 1 pack of 8 cartridges, 100111
- Instructions for Use (online)

[‡] Upon receipt store the Protease Powder frozen at -25 °C to -15 °C and the Magnetic Beads at the temperature indicated on the Magnetic Beads label and Package Insert. All other kit components may be stored at ambient temperature.

[†] Contains guanidinium thiocyanate. Do not combine with disinfectants that contain bleach. See "Warnings and Precautions" section of this document for more information.

Materials Provided (continued)

Revolution cfDNA Reagent Kit, 100119

- Revolution cfDNA Surfactant, 7 mL, 10007
- Revolution cfDNA Lysis Buffer, 22 mL, 10011⁺
- Revolution cfDNA Protease Powder, 40 mg, 10012[‡] or, 50 mg,10012-1[‡]
- Revolution cfDNA Protease Buffer, 2.2 mL, 10056 or, 2.8 mL, 10056-1
- Revolution cfDNA Binding Buffer, 160 mL, 10018⁺
- Revolution cfDNA Magnetic Beads, 2 x 1.4 mL, 10028[‡]
- Revolution cfDNA Wash Solution, 54 mL, 10084
- Revolution cfDNA Elution Buffer, 3.5 mL, 10030
- Instructions for Use (online)

[‡] Upon receipt store the Protease Powder frozen at -25 °C to -15 °C and the Magnetic Beads at the temperature indicated on the Magnetic Beads label and Package Insert. All other kit components may be stored at ambient temperature.

[†] Contains guanidinium thiocyanate. Do not combine with disinfectants that contain bleach. See page 17 for more information.

Other Materials Required (Not Included)

Always wear personal protective equipment, such as a lab coat, protective eyewear, and disposable gloves when working with chemicals. Consult the appropriate Safety Data Sheets (SDSs; available from the product supplier) for more information on safe handling and use.

Revolution Equipment

- Drip Pan, 100140
- Revolution Cartridge Rack, 100305
- Revolution Mag Capsules, 10080
- Revolution Mag Rack, 10082
- Revolution Processor, 10081

Additional Materials and Reagents

- 80% ethanol
- Centrifuge and Microcentrifuge⁺
- Non-magnetic microvial rack
- Phosphate Buffer Saline (PBS) pH 7.5
- Pipettors⁺, pipet tips[‡], and serological pipettes
- Vortex instrument with 2mL microvial tube adaptor

⁺We strongly recommend that instruments are calibrated at regular intervals to ensure that samples are processed consistently and accurately

[‡] We strongly recommend using pipette tips with aerosol barriers to prevent cross contamination.

nRicher Cartridge Usage and Handling

The nRicher Cartridge combines simplicity with foundational technology to deliver unprecedented cfTNA extraction. See this brief <u>Microvial Tube attachment video</u> for more information on correctly attaching the nRicher Cartridge's Sample Tube and cap.

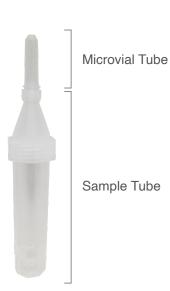


Figure 1 nRicher Cartridge

Figure 2 Removing Microvial Tube

Figure 3 Mag Capsule positioned on nRicher Cartridge

Figure 4

nRicher Cartridge components shown in the Cartridge Rack; the Microvial Tube is removed and placed in a separate microvial rack when accessing the Sample Tube portion of the nRicher Cartridge

Figure 5 The Cartridge Rack is inserted into the Processor

Reagent Storing and Handling

The Revolution cfDNA kits are shipped at room temperature.

IMPORTANT: Upon arrival, remove the components indicated below and store them at the indicated storage temperatures:

- Revolution cfDNA Protease Powder should be stored at -25 °C to -15 °C and can be used until the kit expiration date without affecting protease performance.
- Revolution cfDNA Magnetic Beads should be stored at the temperature indicated on the label and the package insert.
- All other kit components can be stored at ambient temperature (15 °C to 30 °C) until the expiration date without affecting component performance.

Sample and Reagent Volumes

The reagent volumes in the protocol differ based on the starting sample volume. Tables with all of the sample and reagent volumes are included in the Appendix. To make the protocol easy to use, the following icons will be used throughout the protocol to indicate the correct reagent volume for each starting sample volume.

- Green square (■) for 5 mL sample volume
- Blue circle (•) for 10 mL sample volume
- Tan diamond (•) for 15 mL sample volume
- Red triangle (**A**) for **20 mL** sample volume

For example, \blacksquare 250 μ L indicates that at this particular step, 250 μ L would be added if your starting volume was 5 mL.

General Precautions

- Perform all steps at ambient temperature (15 °C to 30 °C) unless otherwise noted.
- If you observe a precipitate in the Revolution cfDNA Lysis Buffer, incubate the Lysis Buffer at 37 °C until the precipitate dissolves. This can happen if storage temperatures are too low.
- If you observe a precipitate in the Revolution cfDNA Surfactant, incubate the Surfactant at 37 °C until the precipitate dissolves. This can happen if storage temperatures are too low.
- Vortex the Revolution cfDNA Magnetic Beads to fully resuspend them immediately before use.
- Blood samples should be collected in K2EDTA tubes or Streck Cell-Free DNA BCT tubes.
- Cell-free DNA is stable for 24 hours in K2EDTA plasma tubes stored at 2 °C to 10 °C.
- Blood samples collected in Streck Cell-Free DNA BCT tubes remain stable for up to 14 days due to the formaldehyde-free preservative in the tubes.
- Use fresh urine stored at 2 °C to 10 °C and spun down to cell-free status within 24 hours of collection to avoid increases in genomic DNA (gDNA) and microbial growth.
- If it is not possible to process urine samples immediately after collection, cfDNA urine preservative should be added. Samples collected in the preservative should preferentially be stored and centrifuged per manufacturer recommendations.

Procedure

1. Protease Preparation

- 1.1. Transfer X amount of Protease Buffer (PB) to the bottle of Protease Powder (PP) based on the paired PB and PP part numbers below.
 - PB part #: 10056 and PP part #: 10012

Transfer 2mL of Protease Buffer (10056) to the bottle of Protease Powder (10012)

- PB part #: 10056-1 and PP part #: 10012-1
 Transfer 2.5 mL of Protease Buffer (10056-1) to the bottle of Protease Powder (10012-1)
- 1.2. Cap the bottle and gently invert 8 to 10 times to dissolve the powder.
- 1.3. Place the rehydrated protease solution on ice until use.

NOTE: Unused rehydrated protease can be stored at 2 °C to 10 °C until needed for re-use.

2. Sample Preparation

For extractions from input sample volumes of plasma or urine of **1 mL to 4 mL** there are two different methods to perform the extraction: The first method is to adjust the input volume up to 5 mL as described below; The second method is direct extraction from 1 mL - 4 mL by substituting the Revolution reagent volumes throughout the protocol as described in **Table 3** in the Appendix on page 23.

For Plasma Samples

- 2.1. Centrifuge the blood samples at 2,000 x g for 10 minutes at 2 °C to 10 °C.
- 2.2. Transfer the plasma to a new centrifuge tube.
- 2.3. Centrifuge the plasma samples at 16,000 x g for 10 minutes at 2 °C to 10 °C.

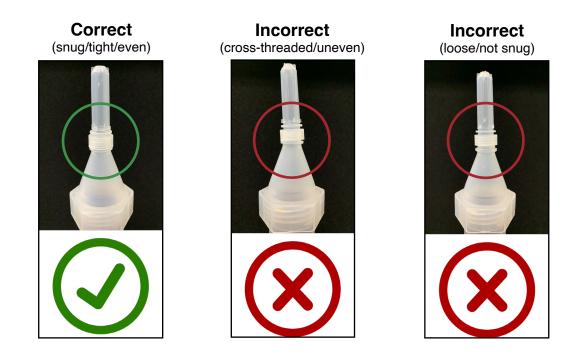
NOTE: Alternatively, the plasma can be centrifuged at 6,000 x g for 30 minutes to remove any residual blood and cell debris.

- 2.4. Transfer the cell-free supernatants into fresh tubes.
- 2.5. All samples must be equilibrated to one of the starting sample volumes (e.g., 5, 10, 15, 20 mL) based on the following criteria:
 - Samples < 5 mL bring the volume to $\blacksquare 5 \text{ mL}$ with PBS pH 7.5
 - Samples < 10 mL bring the volume to 10 mL with PBS pH 7.5
 - Samples < 15 mL bring the volume to 15 mL with PBS pH 7.5
 - Samples < 20 mL bring the volume to ▲ 20 mL with PBS pH 7.5
- 2.6. Process samples immediately or store on ice until use.

For Urine Samples

- 2.7. Centrifuge the urine samples at 16,000 x g for 10 minutes at 2 °C to 10 °C.
- 2.8. Transfer the cell-free supernatants into fresh tubes.
- 2.9. All samples must be equilibrated to one of the starting sample volumes (e.g., 5, 10, 15, 20 mL) based on the following criteria:
 - Samples < 5 mL bring the volume to 5 mL with PBS pH 7.5
 - Samples < 10 mL bring the volume to 10 mL with PBS pH 7.5
 - Samples < 15 mL bring the volume to \blacklozenge 15 mL with PBS pH 7.5
 - Samples < 20 mL bring the volume to ▲ 20 mL with PBS pH 7.5
- 2.10. Process samples immediately or store on ice until use.

3. nRicher Cartridge Preparation


- 3.1. Label the nRicher Cartridge elements (both Sample Tube and Microvial Tube; see Figure 1, page 8) with a sample identifier; use one nRicher Cartridge per sample.
- 3.2. Place the nRicher Cartridge(s) into the Cartridge Rack.
 NOTE: The cartridges should be left in the rack for the entirety of the extraction.

4. Lysis and Bead Binding

- 4.1. Add cell-free plasma/urine to the labeled nRicher Cartridge(s).
- 4.2. Add $\equiv 250 \,\mu\text{L}$, $\oplus 500 \,\mu\text{L}$, $\Rightarrow 750 \,\mu\text{L}$, or $\triangleq 1000 \,\mu\text{L}$ Surfactant Solution to each Sample Tube.
- 4.3. Add \blacksquare 800 μ L, \bigcirc 1600 μ L, \diamondsuit 2400 μ L, or \blacktriangle 3200 μ L Lysis Buffer to each Sample Tube.
- 4.4. Add **a** 80 μ L, **b** 160 μ L, **b** 240 μ L, or **b** 320 μ L Protease Solution to each Sample Tube.
- 4.5. Add \blacksquare 6 mL, \bigcirc 12 mL, \diamondsuit 18 mL, or \blacktriangle 24 mL Binding Buffer to each Sample Tube.
- 4.6. Resuspend the Revolution cfDNA Magnetic Beads by vortexing at medium speed for 10 seconds.
- 4.7. Add \blacksquare 100 μ L, \bigcirc 100 μ L, \diamondsuit 150 μ L, or \blacktriangle 150 μ L Magnetic Beads to each Sample Tube.
- 4.8. Attach the Microvial Tube to its companion nRicher Cartridge, and then transfer the Cartridge Rack containing the nRicher Cartridges to the Revolution Processor.

CAUTION: Do not overtighten. See below for correct attachment.

[protocol continues next page]

NOTE: A tip for connecting the elution tube and sample tube. Position the microvial tube opening over the sample tube opening. Apply medium pressure at the connection point and rotate the microvial tube clockwise to tighten. Repeat until connection is snug. Finally, ensure the microvial tube is aligned vertically. If not vertical, apply light pressure to the microvial tube in the opposite direction of the tilt. After alignment, check to ensure connection is firm and even as shown (see short video for details).

- 4.9. Start the Processor and incubate at room temperature (15 °C to 30 °C) at 30 rpm for 5 minutes, 15 minutes, ◆ 15 minutes, or ▲ 15 minutes.
- 4.10. When the Processor stops, remove the Cartridge Rack from the device, and place the rack on a level surface.

5. Bead Capture

- 5.1. Snap a Mag Capsule onto each nRicher Capsule (see Figure 3, page 8), and then place the Cartridge Rack into the Revolution Processor.
- 5.2. Start the Processor and incubate at room temperature (15 °C to 30 °C) at 30 rpm for 20 minutes, 20 minutes, ♦ 30 minutes, or ▲ 30 minutes.

- 5.3. When the Processor stops, remove the Cartridge Rack from the device, and place the rack on a level surface; let the rack sit for 1 minute to allow all of the liquid to drain from the Microvial Tube into the Sample Tube.
- 5.4. Remove the Mag Capsule and Microvial Tube from each nRicher Cartridge by twisting the Mag Capsule counterclockwise.
- 5.5. Orient the Mag Capsule and Microvial Tube so that the rounded bottom of the Microvial Tube is facing downward; then press the Mag Capsule down toward the benchtop to release the microvial tube.
- 5.6. Transfer the Microvial Tube(s) to a non-magnetic microvial rack.
- 5.7. Discard the liquid remaining in each Sample Tube along with the Sample Tube itself in biohazardous waste.

6. Bead Washing

- 6.1. Label Microvial Tube Caps to correspond with the sample identifier on each nRicher Capsule.
- 6.2. Add 1 mL Wash Solution to each Microvial Tube.
- 6.3. Seal each Microvial Tube with its corresponding cap and vortex for 10 seconds at medium speed.

NOTE: A tip for connecting the cap and microvial tube. Lower the cap plug into the microvial tube opening. Apply light to medium pressure to the connection point. While applying this pressure, rotate the cap plug clockwise to tighten the connection. Repeat until the connection is snug.

- 6.4. Inspect Microvial Tube(s) to ensure beads are fully resuspended; if not, then vortex for an additional 10 seconds or until the beads are fully resuspended.
- 6.5. Centrifuge the Microvial Tube(s) for 1 second in a microcentrifuge to collect all remaining liquid from the cap to the bottom of the tube.
- 6.6. Place the Microvial Tube(s) into the Mag Rack for 2 minutes.
- 6.7. Inspect the Microvial Tube(s) to ensure that the supernatant is clear before proceeding to the next step; if the supernatant is not clear, leave the Microvial Tube(s) on the Mag Rack for an additional 1 minute.
- 6.8. Remove the Microvial Tube Cap from each Microvial Tube and aspirate the supernatant from each Microvial Tube while the Microvial Tube(s) remain in the Mag Rack.

CAUTION: Be careful not to disturb the bead line.

- 6.9. Transfer the Microvial Tube(s) from the Mag Rack to a non-magnetic microvial rack.
- 6.10. Repeat steps 6.2 to 6.9 for a second wash with Wash Solution.
- 6.11. Add 1 mL 80% ethanol rinse to each Microvial Tube.
- 6.12. Recap the Microvial Tube(s) and vortex at medium speed for 10 seconds.
- 6.13. Centrifuge the Microvial Tube(s) for 1 second in a microcentrifuge to collect all remaining liquid from the cap to the bottom of the microvial.
- 6.14. Place the Microvial Tube(s) in the Mag Rack for 2 minutes.
- 6.15. Inspect the Microvial Tube(s) to ensure that the supernatant is clear before proceeding to the next step; if the supernatant is not clear, leave the Microvial Tube(s) on the Mag Rack for 1 minute.
- 6.16. Remove the Microvial Tube Cap from each Microvial Tube and aspirate the supernatant from each Microvial Tube while the Microvial Tube(s) remain in the Mag Rack.
- 6.17. Transfer the Microvial Tube(s) to a non-magnetic microvial rack.
- 6.18. Repeat rinse steps 6.11 to 6.16 for a second ethanol rinse.
- 6.19. After step 6.16, tap the Mag Rack on the bench 5 times to collect all remaining ethanol to the bottom of the Microvial Tube. Carefully aspirate any remaining ethanol from the walls and bottom of the microvial to ensure that the drying time in step 6.20 effectively removes any remaining ethanol.
- 6.20. For all sample volumes, pulse centrifuge the Microvial Tube(s) for 1 second in a microcentrifuge to collect all the beads to the bottom of the microvial.
 BEAD DRYING: Dry the microvial tube in a 45°C heat block for 20 minutes. After drying is complete, transfer the Microvial Tube(s) to a non-magnetic microvial rack.

NOTE: It is important that the magnetic bead pellet is completely dry before proceeding. If the beads are not dry enough, place the microvial tubes in the 45°C heat block for 1 to 2 more minutes; however, do not overdry the magnetic pellet which may cause the pellet to be difficult to resuspend and lower overall cfDNA yield.

[protocol continues next page]

7. Elution

- 7.1. Add 50 μ L Elution Buffer to each Microvial Tube, and recap. **NOTE:** 25 μ L and 100 μ L elution volumes can be used, although the cfDNA concentration will decrease accordingly when eluting in 100 μ L.
- 7.2. Briefly vortex the Microvial Tube(s) at medium to high speed for 5 to 10 seconds.
- 7.3. Make sure the magnetic beads are completely resuspended in the elution buffer; if the beads are not completely resuspended, vortex for another 5 to 10 seconds.
- 7.4. Vortex the Microvial Tube(s) on a vortex shaker for 5 minutes at medium to high speed.
- 7.5. Centrifuge the Microvial Tube(s) for 1 second in a microcentrifuge to collect all remaining liquid from the cap to the bottom of the tube.
- 7.6. Place the Microvial Tube(s) into the Mag Rack for 2 minutes.
- 7.7. Inspect the Microvial Tube(s) to ensure that the supernatant is clear before proceeding to the next step; if the supernatant is not clear, leave the Microvial Tube(s) on the Mag Rack for another 2 minutes.
- 7.8. Transfer the eluate into a clean, properly labeled PCR tube, making sure not to disrupt the magnetic bead pellet while collecting the eluate.
- 7.9. Discard the Microvial Tube(s) containing magnetic beads as biohazardous waste.
- 7.10. Store the eluate at -25 °C to -15 °C until ready for downstream analysis.

[End of nRichDX Revolution cfDNA Extraction Protocol]

Troubleshooting

Observation	Possible cause	Recommended action	
Lower yield than expected	The Revolution cfDNA Magnetic Beads were not properly stored	Store the Revolution cfDNA Magnetic Beads at the temperature indicated on the label and package insert. Do not freeze the beads.	
	An insufficient amount of Revolution cfDNA Magnetic Beads was added	Immediately before use, vortex the tube containing the magnetic beads thoroughly until fully resuspended.	
	The Revolution cfDNA Magnetic Beads are not optimally dried	Drying times may vary depending on the amount of beads used and the environment. Lower volumes of beads require less time to dry. Airflow and humidity in the immediate environment may shorten or lengthen the optimal bead drying time.	
		Overdried beads will stick to the wall of the tube and be difficult to resuspend. Gently scrape the beads off the plastic wall using a pipette tip.	
		Underdried beads may carry ethanol into the eluate and negatively impact downstream applications. Dry beads slightly longer (1-minute intervals) and make note of the optimal drying time for the specific volume.	
	Nucleases	Nuclease contamination will result in a lower yield of intact cfDNA and/or cfRNA. Ensure reagents, pipet tips and plas- ticware in direct contact with the sample are free of unde- sired nucleases. Use nuclease free barrier filter tips and filtered hood to minimize presence of airborne nucleases.	
	Magnetic bead clumping is observed	Vortex the tube containing the Magnetic Beads until they are fully resuspended	
	The sample contains low levels of cfDNA	Increase the starting sample volume.	
Magnetic bead	Loose beads present in the eluate or	Be sure to leave the Microvial Tube(s) on the Mag Rack when removing the eluate containing the cfDNA.	
carryover	inadvertently transferred	If beads are carried over into the new tube, place the tube on the Mag Rack again, wait for the beads to pellet and then transfer the sample to another tube.	

Observation	Possible cause	Recommended action
Microvial Tube not vertical and/or not snug on Sample Tube	Microvial not connected correctly to sample tube	Unscrew Microvial from sample tube. Reattach Microvial to the sample tube using the following steps. Lower the Microvial tube opening over the sample tube opening. Apply medium pressure to the connection point. While applying this pressure, rotate the microvial tube clockwise to tighten the connection. Repeat until the connection is snug. Finally, ensure the microvial tube is aligned vertically. If not vertical, apply a light pressure to the microvial tube in the opposite direction of the tilt. After alignment, check to ensure connection is snug (see reference photo on page 13). Also see the Microvial Tube attachment to Sample Tube and cap video for reference.
Variations in cfDNA yield from donor to donor	Variation in amount of circulating cfDNA. Levels of cfDNA in circulation can range from 1 to 100 ng/mL of plasma or serum de- pending on the donor.	For samples containing low levels of cfDNA, increase the starting sample volume.

Technical Support

For additional questions, please contact technical support services at technicalsupport@nrichdx.com

Warnings and Precautions

For In Vitro Diagnostic Use

Users should wear personal protective equipment as required by local laboratory procedures when performing an isolation, including a lab coat, protective eyewear, and disposable nitrile gloves (or equivalent). Please refer to the relevant safety data sheets (SDSs) for more information.

Discard all used materials as biohazardous waste according to local regulations. **CAUTION:** The Revolution Lysis Buffer contains guanidinium thiocyanate, which when combined with bleach, forms highly reactive compounds.

CAUTION: DO NOT directly add bleach or acidic solutions to the isolation waste.

Clean up all spills with appropriate laboratory-grade detergent and water. Any spills that contain potentially infectious materials should be cleaned first with laboratory detergent and water followed by 1% (v/v) sodium hypochlorite.

If any of the reagent bottles or containers are damaged and leaking fluids, wear gloves and protective eyewear when discarding the bottles.

Revolution cfDNA Surfactant

Hazard pictograms:

Signal word: DANGER

Hazard and precautionary statements:

H315: Causes skin irritation; H318: Causes serious eye damage; P264: Wear protective gloves / protective clothing / eye protection / face protection; P332 + P313: If skin irritation occurs: Get medical advice/attention; P302 + P352: IF ON SKIN - Wash with plenty of soap and water; P305 + P351 + P338: IF IN EYES - Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing; P333 + P313: If skin irritation or rash occurs, get medical advice/attention; P310: Immediately call a POISON CENTER or doctor / physician.

Revolution cfDNA Lysis Buffer

Hazard pictograms:

Signal word: DANGER

Hazard and precautionary statements:

H302 + H312 + H332: Harmful if swallowed, in contact with skin or inhaled; H314: Causes severe skin burns and eye damage; H412: Harmful to aquatic life with long lasting effects; P261: Avoid breathing dust / fumes / gas / mist / vapors / spray; P264: Wash skin thoroughly after handling; P270: Do not eat, drink or smoke when using this product; P271: Use only outdoors or in well-ventilated area; P273: Avoid release to the environment; P280: Wear protective gloves / protective clothing / eye protection / face protection; P301 + P312 + P330: IF SWALLOWED - Call a POISON CENTER / doctor if you feel unwell. Rinse mouth; P301 + P330 + P331: IF SWALLOWED - Rinse mouth. Do NOT induce vomiting; P303 + P361 + P353: IF ON SKIN (or hair): Take off immediately all contaminated clothing. rinse skin with water / shower; P304 + P340 + P310: IF INHALED - Remove person to fresh air and keep comfortable for breathing. Immediately call a POISON CENTER / doctor; P305 + P351 + P338 + P310: IF IN EYES - Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER / doctor; P363: Wash contaminated clothing before reuse; P405: Store locked up; P501: Dispose of contents / container in an approved waste disposal plant.

Revolution cfDNA Protease Powder

Hazard pictograms:

Signal word: DANGER

Hazard and precautionary statements:

H315: Causes skin irritation; H319: Causes serious eye irritation; H334: May cause allergy or asthma symptoms or breathing difficulties if inhaled; H335: May cause respiratory irritation; P261: Avoid breathing dust / fumes / gas / mist / vapors / spray; P305 + P351 + P338: IF IN EYES - Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing; P341 + P311: If experiencing respiratory symptoms: Call a POISON CENTER or doctor / physician.

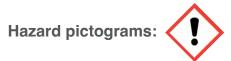
Revolution cfDNA Protease Buffer

Signal word: DANGER

Hazard and precautionary statements:

H315: Causes skin irritation; H318: Causes serious eye damage; P280: Wear protective gloves / protective clothing / eye protection / face protection; P264: Wash hands thoroughly after handling; P332 + P313: If skin irritation occurs, get medical advice / attention; P302 + P352: IF ON SKIN - Wash with plenty of soap and water; P305 + P351 + P338: IF IN EYES - Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing; P333 + P313: If skin irritation or rash occurs, get medical advice / attention; P310: Immediately call a POISON CENTER or doctor / physician.

Revolution cfDNA Binding Buffer


Hazard pictograms:

Signal word: DANGER

Hazard and precautionary statements:

H302: Harmful if swallowed; H314: Causes severe skin burns and eye damage; H412: Harmful to aquatic life with long lasting effects; P260: Do not breathe dust / fume / gas / vapors / spray; P264: Wash hands thoroughly after handling; P270: Do not eat, drink or smoke when using this product; P273: Avoid release to the environment; P280: Wear protective gloves / protective clothing / eye protection / face protection; P301 + P310: IF SWALLOWED - Immediately call a POISON CENTER or doctor / physician; P303 + P361 + P353: IF ON SKIN (or hair) - Remove / take off immediately all contaminated clothing. Rinse skin with water / shower; P 305 + P351 + P338: IF IN EYES - Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing; P310: Immediately call a POISON CENTER or doctor / physician; P330: Rinse mouth. **Revolution cfDNA Wash Solution**

Signal word: WARNING

Hazard and precautionary statements:

H302: Harmful if swallowed; H315: Causes skin irritation; H319: Causes serious eye irritation; P264: Wash hands thoroughly after handling; P270: Do not eat, drink or smoke when using this product; P280: Wear protective gloves / protective clothing / eye protection / face protection; P330: Rinse mouth; P332 + P313: If skin irritation occurs, get medical advice / attention; P305 + P351 + P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P301 + P310: IF SWALLOWED: Immediately call a POISON CENTER or doctor / physician; P302 + P352: IF ON SKIN: Wash with plenty of soap and water.

Appendix

Sample volume (mL)	Surfactant (µL)	Lysis buffer (µL)	Protease solution (µL)	Binding buffer (mL)	Magnetic beads (µL)	Total volume (mL)
5	250	800	80	6	100	12.2
10	500	1600	160	12	100	24.4
15	750	2400	240	18	150	36.5
20	1000	3200	320	24	150	48.7

Table 1. Sample and Reagent Volumes

Table 2. Bead Binding and Bead Capture Incubation Times

Sample volume (mL)	Binding Incubation Time (minutes)	Bead Capture Incubation Time (minutes)	
5	5	20	
10	15	20	
15	15	30	
20	15	30	

*Total volume does not include wash solution Final elution in 25 μ L - 100 μ L

Symbols

In vitro diagnostic medical device

Catalog numbers

Manufacturer

Use-by date

Batch code

Consult instructions for use

Caution

Temperature range

Trademarks, Terms, and Warranty Information

Trademarks: including the nRichDX[®] logo and tagline, nRicher[™], Revolution Sample Prep System[™], Revolution cfTNA Max 20 Kit[™], Revolution cfTNA Max 20 Kit[™], Revolution cfDNA Reagent Kit[™] "Driving Diagnostic Excellence[®]," and "Liquid Biopsy is revolutionizing cancer treatment. nRichDX empowers that revolution.[®]," are trademarks of nRichDX, Inc.

nRichDX products are covered by one or more of the following patents: 10,329,554; 10,585,101; 10,927,366; D886,320; D890,362; Canada patent numbers 3,016,895; 3,042,426; 190733; Europe patent numbers 001720118; 3535058; China patent number ZL2017800688437; Japan patent number 389863; Korea patent numbers 30-1062125; 10-2239349; Australia patent numbers 201916131; 2017355635, with other patents pending internationally.

Use of this product indicates the agreement of purchaser or user of this kit to the following terms:

1. This product can only be used in accordance with the protocols and procedures provided in this document using the components in this kit. nRichDX, Inc. grants no license under its intellectual property to employ or integrate the components of their kits with any components not included in the kit except as indicated in the protocols and procedures described herein.

2. nRichDX, Inc. does not warranty that this kit or the use of this kit does not infringe upon the rights of third-party entities.

3. This kit and the components therein are only licensed for one-time use; the kit or components cannot be reused, refurbished or resold.

4. nRichDX disclaims any licenses, expressed or implied, other than the licenses that are expressly stated.

5. The purchaser and the user of this kit agree to not act or permit anyone else to act in any way that might lead to or enable any of the prohibited acts indicated above. nRichDX may enforce the prohibitions of this Limited License Agreement in Court and shall work to recover all investigative and Court costs, including attorney fees, in any action that nRichDX takes to enforce this Limited License Agreement or any intellectual property rights that relate to this kit and/or components of the kit.

© 2024 nRichDX, Inc.

The nRichDX Revolution System[™]

Liquid Biopsy is revolutionizing cancer treatment. nRichDX empowers that revolution.®

